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Abstract

Introduction: Chemical composition analysis is important in prevention counseling for kidney stone disease.
Advances in laser technology have made dusting techniques more prevalent, but this offers no consistent way to col-
lect enough material to send for chemical analysis, leading many to forgo this test. We developed a novel machine
learning (ML) model to effectively assess stone composition based on intraoperative endoscopic video data.
Methods: Two endourologists performed ureteroscopy for kidney stones ‡ 10 mm. Representative videos
were recorded intraoperatively. Individual frames were extracted from the videos, and the stone was outlined
by human tracing. An ML model, UroSAM, was built and trained to automatically identify kidney stones in
the images and predict the majority stone composition as follows: calcium oxalate monohydrate (COM), dihy-
drate (COD), calcium phosphate (CAP), or uric acid (UA). UroSAM was built on top of the publicly available
Segment Anything Model (SAM) and incorporated a U-Net convolutional neural network (CNN).
Discussion: A total of 78 ureteroscopy videos were collected; 50 were used for the model after exclusions
(32 COM, 8 COD, 8 CAP, 2 UA). The ML model segmented the images with 94.77% precision. Dice coeffi-
cient (0.9135) and Intersection over Union (0.8496) confirmed good segmentation performance of the ML
model. A video-wise evaluation demonstrated 60% correct classification of stone composition. Subgroup anal-
ysis showed correct classification in 84.4% of COM videos. A post hoc adaptive threshold technique was
used to mitigate biasing of the model toward COM because of data imbalance; this improved the overall cor-
rect classification to 62% while improving the classification of COD, CAP, and UA videos.
Conclusions: This study demonstrates the effective development of UroSAM, an ML model that precisely
identifies kidney stones from natural endoscopic video data. More high-quality video data will improve the
performance of the model in classifying the majority stone composition.
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Introduction

K idney stone disease (KSD) affects 9% of the US popula-
tion and results in billions of dollars of annual cost to

society. The recurrent nature of KSD results in multiple emer-
gency room visits, hospital admissions, and surgical proce-
dures. Therefore, long-term prevention is important for KSD
patients. Prevention involves obtaining a composition analysis

of the kidney stone removed at the time of surgery and a panel
of blood and urine tests.1–4 Both AUA and EAU guidelines
recommend that urologists should send stone material for com-
position analysis.1,5 Previous literature suggests that stone com-
position meaningfully informs prevention counseling and can
change pharmacological management.6–8 Therefore, at a kid-
ney stone center that manages both acute and chronic phases of
KSD, stone composition is important to obtain.
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Ureteroscopy with laser lithotripsy is the most commonly per-
formed procedure for KSD. Historically, the standard has been
to fragment the stone into small pieces, remove them using a
basket, and send the fragments for chemical analysis. However,
this clinical practice is evolving because of the advancement of
laser technology. The appearance of adjustable pulse width,
higher treatment frequencies, and separated cavitation bubbles
have greatly improved the efficacy and efficiency of laser litho-
tripsy.9,10 With these changes, stone “dusting” has evolved as an
alternative to the traditional fragmentation and basketing
method. Dusting entails fragmenting the stone into small enough
pieces that can pass naturally. In older lasers, getting fragments
small enough to pass was laborious and inefficient, limiting
widespread use of dusting, but recent studies show that the
acceptance of dusting as a standard of care is increasing.9–13 In
addition, it is important to recognize that using a stone extraction
basket and stone analysis laboratory testing add significant
expense baskets that can cost between $250–300, whereas com-
position testing ranges from $25–35. Therefore, any innovation
that allows urologists to forgo basketing and stone analysis
would be beneficial as health care costs rise.

Computer vision algorithms have been used on still images
and clinical data to predict stone composition14 and classify
abnormalities in vision-based gastroscopy.15 Deep learning in
the form of convolutional neural networks (CNNs) has been
used to predict chemical composition of stones both in labora-
tory and in vivo settings.16,17 The process of separating an
object from the background in an image is known as segmenta-
tion.18 A publicly available segmentation model called Segment
Anything Model (SAM) was used in this study. SAM allows
natural images to be segmented but requires user input through
selection of specific parts of the image and bounding boxes to
select which portion of the image to focus on.19 Computer
vision models such as U-Net allow for automated kidney
stone segmentation. U-Net was specifically created for seg-
mentation of biomedical images with smaller datasets.17,20

In our study, we created a machine learning model that can
segment and characterize the majority stone composition
from ureteroscopy videos. We used U-Net for initial raw
mask generation, a heuristic postprocessing approach to
extract prompts, and adapted SAM for final stone mask gen-
eration. Such a model would allow the urologist to forgo
collecting stone fragments for laboratory chemical composi-
tion analysis, saving time and cost.

Materials and Methods

The institutional review board approved the study. Sub-
jects undergoing ureteroscopy by fellowship-trained endour-
ologists for stones ‡ 10 mm between July 2022 and
November 2023 were identified through retrospective chart
review. Boston Scientific LithoVue and Karl Storz Flex-X
ureteroscopes were used based on surgeon preference. The
stones were primarily dusted, but stone fragments were sent
for chemical composition analysis to an external laboratory
(Arup Laboratories, Salt Lake City, UT). Demographic and
clinical data were recorded, and endoscopic video files were
collected. We extracted individual frames from ureteroscopy
videos that showed the stone with clarity and focus.

We took different approaches to process and prepare data-
sets for the two distinct task requirements for the UroSAM

model as follows: stone segmentation and stone majority
composition classification.

Stone segmentation

Trained research assistants traced images to identify the
stone; this tracing was considered the “ground truth” (Fig. 1
top row). Figure 2 shows the schematics of the UroSAM
model. The necessity for human-labeled prompts in SAM19

is time and resource intensive. Therefore, the U-Net CNN
model was used because of its superiority in handling com-
plex imaging scenarios.21 To improve the U-Net output,
rather than using raw images, our approach involves deploy-
ing U-Net segmentation on numeric representations of
images called image embeddings generated by the SAM
vision encoder (Fig. 3a).

As illustrated by Figure 3b, the raw masks generated by
U-Net may include undesired background noise which is prob-
lematic when precise segmentation is critical in the perform-
ance of subsequent tasks (i.e., composition classification). To
address this, a heuristic method for mask postprocessing was
developed. First, disconnected regions in the raw mask were
removed if they were <40% of the largest region (Fig. 3b, c).
Second, 60 points were identified along the mask edge, 30
inside and 30 outside, providing a distinct boundary between
the kidney stone and its surroundings. Third, the center of the
mask and two random internal points are included as fore-
ground points (Fig. 3c). This refined mask is used as a prompt
for the SAM, generating the final output (Fig. 3d) which is
compared to the ground truth.

To assess the segmentation performance of UroSAM, a
fivefold cross-validation was performed with the segmenta-
tion dataset, including 80% training images and 20% testing
images. A number of metrics were calculated, including
intersection over union (IOU), mean IOU (MIOU), precision
(positive predictive value), recall (sensitivity), and Dice
coefficient. IOU is a measure of the predicted segmentation
and its overlap with the ground truth tracing. MIOU averages
the segmentation of focusing on the stone and correctly iden-
tifying the background from the stone. Precision is the ratio
of true positives (correctly identified stone pixels) to the total
number of pixels predicted to be positive. Recall is the ratio
of true positives over the total number of relevant pixels
(true positives and false negatives). The Dice coefficient
measures the similarity between the ground truth and pre-
dicted masks in image segmentation, indicating the accuracy
of the segmentation with a value closer to 1 signifying better
performance. F1 is a statistical measure that combines the
metrics of precision and recall through a harmonic mean
such that a value closer to 1 indicates improved segmenta-
tion. UroSAM performance was compared with a “vanilla”
SAM model (i.e., using bounding boxes extracted from
human-labeled ground truth masks as prompts for training
and testing), as well as a U-Net model deployed on SAM
image embeddings (i.e., no heuristic postprocessing and no
SAM modules).

Composition classification

The majority stone compositions from the laboratory anal-
ysis were labeled as the “ground truth” for each video. We
recorded the endourologists’ prediction on the majority stone
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composition based on the endoscopic video. In creating the
composition classification model, we followed more strin-
gent criteria in preprocessing the dataset to ensure the mod-
el’s quality. Therefore, low resolution videos or blurry
images were excluded. Examples of stone segmentation and
stone classification are visualized in Figure 1.

Once we obtained the model-generated binary masks that
indicate the foreground as 1 and 0 otherwise, a basic
approach for classification would be to segment the images
according to these masks, extracting features from the seg-
mented regions, and then proceeding to classification. How-
ever, this would be time consuming. Therefore, we reused

FIG. 1. Segmentation (top row) and visualization of different majority stone types.

FIG. 2. Overall architecture of UroSAM for kidney stone segmentation and classification (left), where “fire” indicates
trainable modules and “ice” denotes freezing modules. The detailed architecture of the UroSAM classifier (right) inte-
grates a single-layer self-attention with binary masks as attention masks and a residual connection, complemented by a
feedforward network with one hidden layer.

750 LENG ET AL.



the previously computed image embeddings (features) using
the SAM vision encoder during the segmentation tasks
(Fig. 2a), allowing us to optimize computational time and
resources. To this end, we used a classifier that incorporated
a self-attention layer and a residual connection (Fig. 2b). The
binary masks were utilized within the self-attention mecha-
nism to direct the model’s focus on the foreground regions
(stones). Furthermore, we performed element-wise multipli-
cation between the image embeddings and the binary masks,
which helped to diminish the background features in the
embeddings. The modified embeddings were then combined
with the output of the self-attention layer. Finally, these
combined embeddings are fed into a feed-forward neural net-
work with one hidden layer to carry out the classification
task.

This classification dataset was then used to perform a
video-wise analysis by employing a voting method. For
each frame within a video, UroSAM assigned a prediction
for the majority stone composition. To determine the
overall classification for the video, we counted how often
each class label occurred across all frames within a video.
The confidence of a class label was then calculated by
dividing the number of times that label occurred by the
total number of frames in the video. The dataset was lim-
ited by having only 2 uric acid videos, therefore only two-
fold cross-validation was performed. For the accuracy
calculation, we combined the correct predictions from
both folds and then divided this total by the overall num-
ber of videos in the dataset.

Results

Seventy-eight videos were recorded, and 1677 images
were extracted and traced for segmentation tasks. Table 1

shows the clinical data for the cohort. Only 5 videos were
of ureteral stones, while the rest were kidney stones. For
the classification task, 26 videos were excluded because
of low resolution and 2 were excluded because of missing
laboratory composition data, leaving 50 videos for the
final analysis.

Segmentation model performance

In the segmentation task, UroSAM exhibited strong per-
formance across a range of metrics, including Intersection
over Union (IOU), Mean IOU (MIOU), Dice/F1 score, Pre-
cision, and Recall. The model’s precision was notably high,
with an average precision of 0.9477 – 0.0051 (Table 2).
This performance suggests that the model reliably identified
true positives while minimizing false positives. In addition,
the Dice/F1 scores exceeded 0.9, indicating a balanced
achievement in both precision and recall. Finally, both IOU
metrics reflect the model’s effectiveness in accurately seg-
menting the regions of interest.

We also evaluated the performance of the UroSAM model
against two baseline configurations: a vanilla SAM model
which utilizes bounding boxes extracted from ground truth
masks as prompts, serving as an upper bound in perform-
ance, and a U-Net model using SAM image embeddings
(Table 2).

Classification model performance

On average, UroSAM correctly predicted 60% of the
majority stone composition. However, we observed that for
videos of COD and CAP stones, our model often struggled
to distinguish between COM and the true majority stone
composition. This is likely because of 64% of the videos

FIG. 3. Stages of Heuristic Postprocessing: From left to right: (a) Original Image (image embedding generated by
SAM video encoder), (b) Initial U-Net mask output, (c) Prompt Extraction on U-Net masks, and (d) Final SAM output.
SAM, Segment Anything Model.

Table 1. Fivefold Performance of UroSAM on Segmentation Data

Fold IOU MIOU Dice/F1 Precision Recall

Fold 1 0.8423 0.867 0.9085 0.9545 0.8788
Fold 2 0.8575 0.8762 0.9187 0.9464 0.9036
Fold 3 0.8502 0.8718 0.9151 0.9489 0.8932
Fold 4 0.8456 0.8681 0.9113 0.9404 0.8951
Fold 5 0.8522 0.8730 0.9140 0.9485 0.8900
Average – Standard Deviation 0.8496 – 0.0059 0.8712 – 0.0038 0.9135 – 0.0039 0.9477 – 0.0051 0.8921 – 0.009

IOU, Intersection over Union; MIOU, Mean IOU.
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being COM class. To address this issue, we conducted a post
hoc analysis using a threshold-based method for predictions.
Specifically, for predictions categorized as COM, we applied
a 60% confidence threshold. If the model’s confidence level
for COM exceeded this threshold, the prediction was
accepted as COM. Otherwise, the second-highest prediction
was accepted as the final classification. This approach was
designed to mitigate the model’s bias toward the over-
represented COM class and improve the overall accuracy of
our classification system. When the threshold was imple-
mented, the model achieved an average accuracy of 62%. In
addition, the introduction of the threshold method improved
accuracy for all classes except COM, underscoring its effec-
tiveness in enhancing the model’s overall discriminatory
capability for all classes.

Another post hoc analysis was performed by combining
COM and COD majority stones together as CO, since pre-
vention counseling is similar for both types of stones. The
UroSAM model classification accuracy increased signifi-
cantly from 60% (62% with adaptive threshold) to 78%
(Table 3). In comparison, the endourologists predicted as
much as 72% of the time (Table 3).

Discussion

In this study, we demonstrate the development of Uro-
SAM, a machine learning model with Meta� Segment Any-
thing Model as the core foundation, complemented by U-Net
and heuristic postprocessing to segment an endoscopic
image to accurately identify kidney stones. Furthermore, we
evaluated the model’s ability to predict the majority stone
composition. This to our knowledge is the first study to
combine SAM and U-Net in complementary roles—this

innovative approach enables accuracy and optimization in
the analysis of ureteroscopy video images for stone preven-
tion while also being relatively efficient in the use of compu-
tational resources.

Previous attempts to predict stone composition from
images of kidney stones have used photographs or ex vivo
models by placing stones in a cylinder.16,22 As we used
natural endoscopic images for UroSAM, ML model per-
formance from these studies is not comparable with the
present study. Other studies have used endoscopic images
but employed different ML models. Setia and colleagues
compared the performance of U-Net, U-Net++, and Dense-
Net, demonstrating a Dice coefficient of 0.84 for the U-
Net++.17 As the datasets were different, the results cannot
be compared directly, but UroSAM performed well in
segmentation, with high precision, recall, and Dice/F1.
Similarly, Oh and associates applied a ResNet CNN to
individual frames from endoscopic images. They combined
COM, COD, and CAP in one group, with 88.2% correct
classification. In our study’s post hoc analysis, we elected
to separate CAP from COM and COD as CAP stones
require a significantly different prevention approach. We
demonstrated that by combining COM and COD, the clas-
sification accuracy increased from 60% to 78% (62% to
78% with adaptive thresholding). The endourologist pre-
diction was 72% which was comparable to that of the ML
algorithm.

There are several limitations to this study. First, a ret-
rospective design naturally introduces selection bias.
Second, there were limited data for stones in the ureter,
limiting the generalizability of the ML model. Third,
a majority of the included ureteroscopy videos were
COM, 32/50 (64%), which can cause “overfitting,” a

Table 2. Performance of Different Models on Segmentation Data Fold 1

Model IOU MIOU Dice/F1 Precision Recall

UroSAM (ours) 0.8423 0.867 0.9085 0.9545 0.8788
Vanilla SAM 0.8866 0.9009 0.9384 0.9577 0.9236
U-Net 0.854 0.8766 0.9156 0.9388 0.9066

IOU, Intersection over Union; MIOU, Mean IOU.

Table 3. Clinical and Machine Learning Data for Each Stone Type. Calcium Oxalate

Represents a Combination of COM and COD

Majority stone composition
(n = number of videos) Age BMI

Stone
burden
(mm)

Stone
density
(HU)

Model without
threshold correct
(number/%)

Model with
threshold correct

(number/%)

Endourologist
correct

(number/%)

COM (n = 32) 59.8 32.4 17.4 1117.2 27/84.4% 23/71.9% 20/62.5%
COD (n = 8) 55.6 27.4 18.5 1134.9 1/12.5% 3/37.5% 7/87.5%
CAP (n = 8) 52.3 34.2 21.2 971.8 2/25.0% 4/50.0% 2/25.0%
UA (n = 2) 69.0 43.0 43.0 609.5 0/0% 1/50.0% 1/50%
CO (n = 40) 59.1 31.5 17.6 1120.4 37/92.5% 34/85.0% 33/82.5%
Total (n = 50) 30/60% 31/62% 30/60%
Total (COM and COD

combined as CO [n = 50])
39/78% 39/78% 36/72%

COM, Calcium Oxalate Monohydrate; CO, Calcium Oxalate; COD, Calcium Oxalate Dihydrate; CAP, Calcium Phosphate; UA, Uric
Acid.
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phenomenon known in the ML literature with unbalanced
datasets. This was apparent as COM had the highest cor-
rect percentage of 71.875%, whereas the other stones
were 37.5%, 50%, and 50% for COD, CAP, and UA,
respectively. This finding suggests that more video data
are needed to improve accuracy, especially for the less
prevalent stone types. Fourth, although vanilla SAM
demonstrates high performance, its reliance on human-
labeled prompts for inference renders it impractical for
real-world applications where resources and time are lim-
ited. These comparisons underline the strengths of our
model, particularly in achieving high precision, a key
metric for classification tasks. Finally, the variable intra-
calculus architecture of kidney stones is well known.23

Therefore, it is possible that the ground truth, that is, the
chemical stone composition, does not accurately reflect
the true stone composition. To solve this limitation, we
would need to extract whole stones or large fragments, as
can be done during percutaneous nephrolithotomy, and
train the model on dusting of these larger fragments in a
porcine model.

Future studies would collect data prospectively, examine
the ability of an ML model in identifying minority stone
composition which can influence medical management,
and include real-time interpretation of ureteroscopy videos
intraoperatively. In addition, clinical preprocedural factors,
including demographics, laboratories, and previous stone
type, could be included in the ML model to enhance its
predictive capability.

Conclusions

Our study demonstrates the effective development of Uro-
SAM, a machine learning model for identifying kidney
stones and their compositions from endoscopic video data
during ureteroscopy. UroSAM combines an adapted SAM,
serving as the foundation, with a U-Net and heuristic post-
processing for prompt extraction. Further work is required to
improve the overall accuracy and generalizability of the
model.
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Abbreviations Used

ML ¼ machine learning
KSD ¼ kidney stone disease
CNN ¼ convolutional neural network
COM ¼ calcium oxalate monohydrate
COD ¼ calcium oxalate dihydrate
CAP ¼ calcium phosphate
UA ¼ uric acid

SAM ¼ segment anything model
IOU ¼ intersection over union

MIOU ¼ mean intersection over union
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